Symmetric Treatment of Load and Generation: A Necessary Condition for Demand Response to Benefit Wholesale Market Efficiency and Manage Intermittency

Frank A. Wolak
Director, Program on Energy Sustainable Development
Professor, Department of Economics
Stanford University
wolak@stanford.edu
http://www.stanford.edu/~wolak
Chair, Market Surveillance Committee of California
Independent System Operator

Dynamic vs. Time-of-use pricing

- Dynamic pricing
 - Retail prices that vary with real-time system conditions
 - Requires hourly meters to implement
 - Must measure consumption on hourly basis to charge hourly prices
- Time-of-use pricing (TOU)
 - Retail prices that vary with time of day, regardless of system conditions
 - Low price from midnight to 12 pm and 6 pm to midnight
 - High price from noon to 6 pm
 - Does not require hourly meter
 - Only meter that records monthly consumption in two time periods

Outline of Talk

- Dynamic Pricing versus Time-of-Use Pricing
- Symmetric treatment of load and generation
 - A necessary condition for realizing the benefits of dynamic pricing
 - · Analogues in markets for other products
 - Problems with a legacy default fixed retail price
- Why dynamic pricing is inevitable
 - Managing intermittency
 - · Managing unilateral market power
- Dynamic Pricing Plans
 - Hourly Pricing (HP)
 - Critical Peak Pricing (CPP)
 - Critical Peak Pricing with Rebate (CPP-R)
- Day-ahead versus real-time dynamic pricing programs
 - Technology-assisted demand reductions
 - The role of symmetric treatment of load and generation

Dynamic vs. Time-of-use pricing

- Dynamic pricing
 - Customers have incentive to reduce demand during periods with high wholesale prices and stressed system conditions
 - Reduces wholesale price volatility and increases system reliability
 - Limits ability of suppliers to exercise unilateral market power
 - Retailers with dynamically priced customers can even use them to exercise monopsony power (more on this if there is time)
 - Downward sloping hourly demand for electricity with respect to hourly wholesale price
- Time-of-use pricing
 - Customers have no incentive to reduce demand during periods with high wholesale prices and stressed system conditions
 - · Similar incentive to single fixed price tariff
 - Two fixed prices all days as opposed to one fixed price all days
 - Produces perfectly inelastic hourly demand for electricity with respect to hourly wholesale price

Symmetric Treatment of Consumers and Producers

- In all markets, default price all consumers must pay and producers must receive is real-time price
 - Without symmetric treatment, maximum amount of active demand-side participation that benefits market efficiency is unlikely to develop
 - Neither consumers or producers are required to pay or receive this price, but in order to avoid it, market participant must sign a hedging arrangement
- Example from airline industry
 - Customers always have option to show up at airport and purchase ticket for flight they would like to travel on at real-time price
 - This default purchase strategy has significant price risk because flight can sell out
 - To hedge risk, consumer purchases ticket in advance (fixed-price forward contract)
 - Electricity consumers must face same default price as consumers of all other products for demand response to benefit market efficiency

Setting Default Retail Price

- Pass through hourly real-time wholesale price in default retail rate (or set extremely high fixed default price)
 - · For all customers with interval meters
- No customer needs to pay real-time price, but all customers need to face risk of real-time price just as generation unit owner does
 - · Real time price risk exists and someone must manage it
 - Putting all risk on suppliers is unlikely to be least cost solution
- Customers can select pricing plans that take on desired level of real-time price risk, but they must pay appropriate price for level of risk they take on—Risk management is not costless
- Analogue to airline industry--If customer can always by at threeweek advance purchase price, why ever buy three weeks in advance?

Symmetric Treatment of Consumers and Producers

- Because of legacy of vertically integrated-monopoly market structure, in many jurisdictions customers have hedge against real-time price for unlimited quantity of electricity
 - In vertically-integrated monopoly regime, utility provided spot electricity price insurance to customer
 - Customer paid firm's average cost for each KWh consumed and utility ensured supply was always available
- In wholesale market regime it is very difficult to set a fixed retail price for unlimited quantity that is guaranteed to always cover wholesale energy costs
 - No secondary market activity in this kind of contract

The Trouble with a Fixed Default Retail Price

- Simple example to illustrate problems created by regulator setting default fixed retail price for encouraging active participation of final demand
- Assume consumers have expected utility functions, U(E(P),σ(P)), that are decreasing in expected price, E(P), and standard deviation of price, σ(P), paid for retail electricity
 - Customer would prefer lower expected price, E(P), and lower standard deviation of expected price, $\sigma(P)$
- Retailers can only offer lower expected price, E(P), if customer is willing to take on more price risk, σ(P)
- If regulator offers default fixed retail price that is too low, few if any customers will voluntarily choose to a dynamic pricing tariff

Important Point

- Fixed-retail price does not imply customers do not pay realtime hourly wholesale price in retail prices
 - Retailers will go bankrupt if retail price does not satisfy equation given below on an annual basis
 - $P(retail) \ge P(wholesale) + P(transmission) + P(distribution)$
- Conclusion—Cannot "protect customers from volatile wholesale prices"
 - Can only prevent them from taking actions to limit wholesale price volatility and reduce their monthly bill
 - Investments in energy storage and demand flexibility can only be profitable with symmetric treatment of load and generation
 - If pay 10 cents/KWh for all KWH, how you do make storage and load-shifting investments pay?

11

Why Dynamic Pricing is Inevitable

- Many states have ambitious renewable energy goals
 - California has 33 percent renewable share goal by 2020
- Significant system operation challenges associated with large renewable energy share
 - With 33 percent renewable share, significant fraction of energy can disappear with little warning
 - Operators need to hold more operating reserves
 - · Fossil fuel units running with unloaded capacity
 - · Quick start combustion turbine generation units
 - Energy storage technologies required
 - Transfer off-peak power to peak
 - · Price differences across hours of day make storage economic

Managing Intermittency

- Wind and other renewables often unavailable during peak periods
 - July 2006 heat storm, July 24 demand in California ISO control area hit a 1 in 50 year peak of 50,200 MW
 - Less than 5 percent of installed wind capacity was operating at the time
 - Wind energy comes primarily during night
 - Solar photovoltaic panels less efficient during very hot portion of day

Price Implications of Intermittency

- Intermittency and price for GHG emissions enhances electricity price volatility
 - With a significant renewable share wholesale prices are likely to be very low when these units are operate
 - With a price of GHG emissions and high fossil fuel prices, when fossilfuel units operate wholesale prices are very high
- Creates incentive for investments in storage technologies
 - Value of storage technology is ability to turn low-priced electricity into high-price electricity
- Symmetric treatment of load and generation creates the strongest possible incentive for final demand to participate actively in wholesale market

Economics of Energy Efficiency

- · Variation in electricity demand throughout day and year
 - On 7/24/06 demand ranged from 28,300 MW to 50,200 MW
- Average MW consumption per hour during 2006
 - Approximately 27,000 MW
 - Peak demand for 2006 is 50,200 MW
- Reducing peak demand
 - Eliminate need to construct new generation capacity
 - Can retire old inefficient units located close to large cities
- Significant fraction of generation capacity used very infrequently
 - In California approximately 5,000 MW (10 percent of peak demand) used less than 2 percent of hours of the year
 - With climate change larger fraction is likely to be used even less frequently

Table E.1 Load Statistics for 2003 – 2007*

Year	Avg. Load (MW)	% Chg.	Annual Total Energy (GWh)	Annual Peak Load (MW)	% Chg
2004 Actual	27,309	3.5%	239,312	45,597	7.1%
2005 Actual	26,990	-1.2%	236,483	45,562	-0.1%
2006 Actual	27,427	1.6%	240,344	50,270	10.3%
2007 Actual	27,646	0.8%	242,265	48,615	-3.3%
2003 Adjusted	25,471		223,206	41,063	
2004 Adjusted	26,436	3.7%	231,660	44,209	7.1%
2005 Adjusted	26,477	0.2%	231,994	44,260	0.1%
2006 Adjusted	27,427	3.5%	240,344	50,198	11.8%
2007 Adjusted	27,646	0.8%	242,265	48,615	-3.3%

* Adjusted figures are normalized to account for day of week, changes in the CAISO Control Area footprint, and the 2004 leap year.

Barriers to Dynamic Pricing

- Substantial state-level regulatory barriers to dynamic pricing
 - "Consumers must be protected from short-term price risk"
 - "Electricity is a right, not a commodity"
 - Wolak, Frank (2007) "Managing Demand-Side Economic and Political Constraints on Electricity Industry Restructuring Processes," on web-site.
- Existing stakeholders in regulatory process realize few, if any, benefits from dynamic pricing
 - Regulatory staff, Generation unit owners, Distribution utilities
 - · Only consumers realize benefits

Price-Responsive Demand

- Lack of hourly metering of final demand makes it impossible to set hourly retail prices that pass-through hourly wholesale price
 - Customer reduces monthly bill by same amount by reducing consumption by 1 KWh during hour when wholesale price is \$5000/MWh as he does when price is \$0/MWh
- Economics of hourly meters is rapidly changing because of technological change
 - Major cost of monthly reading for conventional meters is labor cost
 - Modern hourly meters are read remotely by wireless or wireline technology
 - Interval metering investment can be largely justified based on metering reading labor cost saving and increased outage monitoring quality
- All California investor-owned utilities should have interval meters in place for all customers by 2011
 - Need retail prices that maximize benefits to consumers of these meters

Politically Acceptable Real-Time Pricing

- Critical Peak Pricing—Customer consumes according to usual fixed-price tariff or increasing block fixed-price tariff during all hours of each day
- Customers face risk of Critical Peak Pricing (CPP) day
 - Retailer commits to no more than pre-specified number of CPP days in given time interval
 - For example 12 CPP days during summer months
 - During peak-period of a CPP day, customer pays a much higher price for electricity
 - Peak period is typically 4 to 6 hours during day to address "cost of taking action problem"
- Regardless of wholesale price, retailer still profits from CPP event because customers are charged high retail price during CPP event
 - Creates moral hazard problem for retailer

Politically Acceptable Real-Time Pricing

- Major complaints with implementing hourly pricing is that customers cannot respond to hourly wholesale prices
 - Difficult to determine when is best time to take action
- If action is costly and price increase is one hour in duration, a very large price spike is needed to cause customers to respond
 - For residential customer with (2.5 KW) flat load shape, a large price spike is needed to overcome \$5 cost of taking action to reduce demand by 20 percent
 - \$10,000/MWh for a 0.5 KWh demand reduction for 1 hour
 - AU \$10,000/MWh is offer cap on Australian market
 - Longer duration of high prices requires smaller increase in prices
 - \$5,000/MWh average price for 0.5 KWh demand reduction for 2 hours

Politically Acceptable Real-Time Pricing

- CPP with rebate mechanism (CPR-R) is even more popular with consumers
 - Consumption during peak hours of CPP days receives a rebate relative to household's reference consumption, if its actual consumption is less than reference consumption
 - Rebate implies that customers guaranteed not to pay more than they would have under baseline tariff
 - "You can't lose from rebate mechanism"
 - Reward customers with rebate for reductions during stressed system conditions
 - Politically palatable form of real-time pricing
 - Retailer faces risk that total rebates paid will be more than wholesale energy procurement cost savings
 - If CPP day wholesale price is \$300/MWh then if wholesale price is below \$300/MWh, by calling a CPP days the retailer loses money
 - · Addresses moral hazard problem associated with CPP tariff

Day-Ahead versus Real-Time Dynamic Pricing

- All US wholesale markets are multi-settlement markets
 - · Day-ahead forward market
 - Buy and sell energy for delivery and withdrawal during each hour of following day at fixed hourly price
 - Real-time imbalance market
 - Buy or sell imbalances relative to day-ahead schedules during each hour of day at hourly price
- All dynamic pricing plans currently based on day-ahead prices
 - Day-ahead prices are substantially less volatile than realtime prices

Day-Ahead versus Real-Time Dynamic Pricing

- Symmetric treatment of load and generation revisited
 - Default price that supplier receives is real-time price
 - Only if supplier sells in day-ahead forward market can it be paid the day-ahead price, but only for quantity sold in day-ahead market and not for actual production
- If default price that all consumers pay is real-time price, this will open a floodgate of innovation and investment in automated and human intervention-based demand response
- Automated demand-side participation in wholesale market can help overcome regulatory barriers to symmetric treatment of load and generation

Day-Ahead versus Real-Time Dynamic Pricing

- Even during a year with a depressed economy and mild weather, there were a number of periods with very high real-time prices
 - With symmetric treatment of load and generation and automated response technology, shifting demand away from certain periods can yield significant cost savings
 - Buy energy at \$50/MWh in day-ahead market and sell it back at \$2,000/MWh in real-time market
- Most volatile prices are near major load centers
 - California retailers are currently able to buy at Load Aggregation Point (LAP) prices averaged over large geographic areas covered by three investor-owned utilities
 - This is likely to end in the near future

Conclusions

- Default real-time pricing maximizes consumer benefits from dynamic pricing
 - Makes day-ahead dynamic pricing, storage and automated load shifting technologies financially viable
 - No customer needs to pay this price for any consumption, only face it as a default price, just like in all other markets
- Default fixed price increases average prices to consumers or increases risk of retailer bankruptcy
 - Does not protect consumers from paying volatile wholesale prices
- Regulator must only allow consumers to purchase fixed load shapes at a fixed price, not all they want at a fixed price
 - Consumers buy and sell deviations from fixed load shapes in day-ahead and real-time markets
 - Similar to cell phone model
 - · Purchase total monthly minutes at fixed price in advance
 - · Real-time price per minute for consumption above total monthly minutes
 - Rollover of unused minutes similar to selling unconsumed contract quantity in day-ahead or realtime market

Questions/Comments
For more information:
http://wolak.stanford.edu/~wolak